Pre-Calculus

Extremum Values WS

Sketch the graph of the given parabola and state the coordinates of its vertex, x and y intercepts and its maximum or minimum value.

1. \(y = x^2 - 8 \)
 - x intercept: \((-\sqrt{8}, 0) (\sqrt{8}, 0)\)
 - y intercept: \(0, -8\)
 - Vertex coordinate: \((0, -8)\)
 - Critical point: \((0, -8)\)

2. \(y = 4 - x^2 \)
 - x intercept: \((2, 0) (-2, 0)\)
 - y intercept: \((0, 4)\)
 - Vertex coordinate: \((0, 4)\)
 - Critical point: \((0, 4)\)

3. \(y = 2x^2 + 4x + 3 \)
 - x intercept: none
 - y intercept: \((0, 3)\)
 - Vertex coordinate: \((-1, 1)\)
 - Critical point: \((-1, 1)\)

4. \(2x^2 - 20x + 57 \)
 - x intercept: none
 - y intercept: \((0, 57)\)
 - Vertex coordinate: \((5, 7)\)
 - Critical point: \((5, 7)\)
5. \(y = 3x^2 - 12x + 13 \)
 - x intercept: none
 - y intercept: \((0, 13)\)
 - vertex coordinate: \((1, \frac{73}{64})\)
 - Critical point: ___________

6. \(y = 1 - 6x - x^2 \)
 - x intercept: \((-2, 0), (1, 0)\)
 - y intercept: \((0, 1)\)
 - vertex coordinate: \((-3, 10)\)
 - Critical point: \((-3, 10)\)

7. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

 \[
 \text{Perimeter} \Rightarrow 2x + y = 2400 \\
 \text{Area} \Rightarrow xy \\
 x = 600, \ y = 1200, \ A = 720,000
 \]

8. A rectangle has a perimeter of 20 ft. Express the area \(A \) of the rectangle as a function of the length of \(x \) of one of its sides.

 \[
 \text{Perimeter} \Rightarrow 20 = 2x + 2y \\
 A(x) = x(20-2x)
 \]

9. Find two numbers whose sum is -24 and whose product is a maximum.

 \[
 x = -12, \quad \text{product: } 144 \\
 y = -12
 \]